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Abstract. We investigate the one-parameter family of transformations on superfields of the super principal
chiral model and obtain different zero-curvature representations of the model. The parametric transformation
is related to the super Riccati equations and an infinite set of local and non-local conservation laws is derived.
A Lax representation of the model is presented which gives rise to a superspace monodromy operator.

1 Introduction

There has been much interest in the study of classical as
well as quantum integrability of non-linear sigma models
for the last three decades [1–14]. Pohlmeyer and Lüscher
investigated the one-parameter family of transformations
which is responsible for the existence of a linear system
associated with the non-linear field equations of the sigma
model as a result of which a parametric Bäcklund transfor-
mation (BT) and an infinite set of local as well as non-local
conservations laws is obtained [6, 7]. The local and non-
local conservation laws were further investigated by dif-
ferent authors [8–28]. The local conserved quantities and
their involution of the bosonic and supersymmetric prin-
cipal chiral model (SPCM) have been investigated quite
recently [25,26].

In this paper, we investigate a one-parameter family
of transformation on superfields of field equations of the
super principal chiral model leading to a superfield Lax
formalism of the model. The associated linear system in
superspace is obtained, which is then expressed as a super-
space zero-curvature condition. The linear system is then
related to the super Bäcklund transformation and super
Riccati equations of SPCM. A fermionic and bosonic Lax
type representation is obtained which is associated with
the monodromy operator of SPCM. The linear system in
superspace is then used to generate bosonic non-local su-
perfield currents of SPCM, which, when expressed in terms
of components, coincide with those obtained in [19,20,26].

2 Super principal chiral model

The superspace lagrangian of the super principal chiral
model is

L =
1
2

Tr(D+G
−1D−G) ,
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whereD± = ∂
∂θ± − iθ±∂± are superspace covariant deriva-

tives and theG(x±, θ±) are matrix superfields taking values
in a Lie group G. The superfield G(x±, θ±) is a function of
the space coordinates x± and anti-commuting coordinates
θ±. The superfield constraints of the model are

G(x, θ)G−1(x, θ) = 1 = G−1(x, θ)G(x, θ) .

The model has global chiral symmetry i.e. the super-
space lagrangian L is invariant under

GL × GR : G(x±, θ±) = UG(x±, θ±)V−1 ,

where U and V are GL and GR valued matrix superfields
respectively. The Noether conserved superfield currents as-
sociated with a global transformation are

JL
± = iD±GG−1 , JR

± = −iG−1D±G ,

where JR,L
± are Grassmann odd and are Lie algebra valued,

i.e. J± = Ja
±T

a, where {T a} is the set of generators of
the Lie algebra of G. The conservation equation and zero-
curvature condition for left and right superfield currents
are respectively

D−J+ −D+J− = 0 , (2.1)

D−J+ +D+J− + i {J+, J−} = 0 , (2.2)

where {} is the anticommutator. The superspace equa-
tions (2.1) and (2.2) can be combined to

D−J+ = D+J− = − i
2

{J+, J−} . (2.3)

Equation (2.3) holds both for left and right superfield cur-
rents.

To find the component content of the model, we expand
each superfield G(x±, θ±) as

G(x, θ) (2.4)
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= g(x)(1 + iθ+ψ+(x) + iθ−ψ−(x) + iθ+θ− F (x)) ,

where the ψ± are Majorana spinors and F (x) is for the
auxiliary fields1. The superfield has an algebraic equation of
motion, and, eliminating it, the SPCM lagrangian becomes

L = − 1
2

Tr
(
g−1∂+gg

−1∂−g

+iψ+

(
∂−ψ+ +

1
2

[
g−1∂−g, ψ+

])
(2.5)

+
i
2
ψ−

(
∂+ψ− +

1
2

[
g−1∂+g, ψ−

])
+

1
2
ψ2

+ψ
2
−

)
.

The equation of motion for SPCM can be found directly
from (2.5) using the Euler–Lagrange equations. The com-
ponent expansion of any superfield current of SPCM can
be written as

J± = ψ± + θ±j± − 1
2

iθ∓ {ψ+, ψ−}

−iθ+θ−
(
∂±ψ∓ − [j±, ψ∓] − i

2
[
ψ2

±, ψ∓
])

,

where j± = −(g−1∂±g + iψ2
±). Substituting these into

the superspace equations of motion, collecting terms and
writing h± = ψ2

±, we get equations of motion for fermionic
and bosonic fields of SPCM:

∂±ψ∓ − 1
2

[j±, ψ∓] − i
4

[h±, ψ∓] = 0 ,

∂−j+ + ∂+j− = 0 ,

along with

∂∓j± = − 1
2

[j±, j∓] +
i
4

[j∓, h±]

− i
4

[j±, h∓] +
1
4

[h±, h∓] .

We use the fermion equations of motion to get the
following equations:

∂−j+ − ∂+j− + [j+, j−] = i∂−h+ − i∂+h− ,

∂∓(ih±) = − 1
2

[
ih±, j∓ +

i
2
h∓

]
.

1 Our notation conventions are as follows. The two-
dimensional Minkowski metric is ηµν = diag(+1,−1), and the
Dirac algebra {γµ, γν} = 2ηµν is satisfied by the γ−matrices

γ0 =

(
0 i
−i 0

)
, γ1 =

(
0 i
i 0

)
.

The Dirac spinor has two components ψ± called chiral spinors,
and we shall assume that ψ± are real (Majorana) i.e. ψ∗

± = ψ±.
Under a Lorentz transformation x±, ∂± and ψ± transform as
x± �−→ e∓Λx±, ∂± �−→ e∓Λ∂± and ψ± → e∓ 1

2 Λψ±, where Λ
is the rapidity of the Lorentz boost. The rule for raising and
lowering spinor indices is ψ± = ±ψ∓.

3 Superfield Lax formalism

The superfieldLax representation of SPCMcanbe obtained
by defining a one-parameter family of transformations on
the superfields of SPCM. A one-parameter family of trans-
formations on the superfields G(x, θ) is defined by matrix
superfields U (γ) and V(γ), where γ is a real number. The
transformation on superfield G(x±, θ±) is

G(x±, θ±) �→ G(γ)(x±, θ±) = U (γ)G(x±, θ±)V(γ)−1 ,

(3.1)

where U (γ) and V(γ) belong to G. Here we choose the bound-
ary values V(1) = 1, U (1) = 1 orG(1) = G. It can be checked
that if G is any classical solution, so is G(γ), provided that

D±U (γ) = − i
2

(1 − γ∓1)JL
±U (γ),

D±V(γ) = − i
2

(1 − γ∓1)JR
±V(γ) . (3.2)

The compatibility conditions for these equations are{
(1 − γ−1)D−JL

+ + (1 − γ)D+J
L
−

+i
(

1 − 1
2

(γ + γ−1)
) {

JL
+, J

L
−

}}
U (γ) = 0 ,

{
(1 − γ−1)D−JR

+ + (1 − γ)D+J
R
−

+ i
(

1 − 1
2

(γ + γ−1)
) {

JR
+ , J

R
−

}}
V(γ) = 0 .

From the transformation on the superfieldsG(x±, θ±), one
can easily find the transformation on the Lie algebra valued
Noether superfield current:

JL
± �→ J

L(γ)
± = γ∓1U (γ)−1

JL
±U (γ) ,

JR
± �→ J

R(γ)
± = γ∓1V(γ)−1JR

±V(γ) .

Since the one-parameter family of transformation maps
classical solutions to new classical solutions, these super-
field currents are conserved in superspace for any value of
γ:D+J

L,R(γ)
− −D−J

L,R(γ)
+ = 0. From now on we shall only

use JR
± and drop the superscript to write J± = JR

± . The
associated linear system of SPCM is then written as

D±V(t, x, θ;λ) = A(λ)
± V(t, x, θ;λ) , (3.3)

where the odd superfields A(λ)
± are given by

A(λ)
± = ± iλ

1 ∓ λ
J± . (3.4)

The parameter λ is the spectral parameter and is related
to the parameter γ by λ = 1−γ

1+γ . The compatibility con-
dition of the linear system (3.3) reduces to a fermionic
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zero-curvature condition for odd superfields A(λ)
± as fol-

lows: {
D+ − A(λ)

+ , D− − A(λ)
−

}
≡ D+A(λ)

− +D−A(λ)
+ −

{
A(λ)

+ ,A(λ)
−

}
= 0 . (3.5)

The superspace Grassmann odd operators L(λ)
± = D± −

A(λ)
± satisfy Lax type equations in superspace D∓L(λ)

± ={
A(λ)

∓ ,L(λ)
±

}
. By applying D± on (3.3) respectively, one

gets a linear system in terms of even superfields Ã(λ)
± :

∂±V(t, x, θ;λ) = Ã(λ)
± V(t, x, θ;λ) , (3.6)

where the even superfields Ã(λ)
± are

Ã(λ)
± =

{
∓

(
λ

1 ∓ λ

)
D±J± + i

(
λ

1 ∓ λ

)2

J2
±

}
. (3.7)

The compatibility condition of (3.7) now reduces to a
bosonic zero-curvature condition for the even super-
fields Ã(λ)

± :[
∂+ − Ã(λ)

+ , ∂− − Ã(λ)
−

]
≡ ∂−Ã(λ)

+ − ∂+Ã(λ)
− +

[
Ã(λ)

+ , Ã(λ)
−

]
= 0 . (3.8)

The associated linear system (3.6) can be re-expressed in
term of space-time coordinates:

∂0V(t, x, θ;λ) = Ã(λ)
0 V(t, x, θ;λ) ,

∂1V(t, x, θ;λ) = Ã(λ)
1 V(t, x, θ;λ) , (3.9)

with the superfields Ã(λ)
0 and Ã(λ)

1 defined by

Ã(λ)
0 =

1
2

{( −λ
1 − λ

)
D+J+ +

(
λ

1 + λ

)
D−J−

+i
(

λ

1 − λ

)2

J2
+ + i

(
λ

1 + λ

)2

J2
−

}
,

Ã(λ)
1 =

1
2

{( −λ
1 − λ

)
D+J+ −

(
λ

1 + λ

)
D−J−

+ i
(

λ

1 − λ

)2

J2
+ − i

(
λ

1 + λ

)2

J2
−

}
.

The compatibility condition of the system (3.9) is[
∂0 − Ã(λ)

0 , ∂1 − Ã(λ)
1

]
≡ ∂0Ã(λ)

1 − ∂0Ã(λ)
1 +

[
Ã(λ)

0 , Ã(λ)
1

]
= 0 . (3.10)

This is essentially the zero-curvature condition which leads
to a Lax type representation of SPCM. We can now define

Grassmann even operators in superspace: L̃(λ)
1 = ∂1 −

Ã(λ)
1 ; L̃(λ)

0 = ∂0 −Ã(λ)
0 , obeying the following equations:

∂0L̃1
(λ)

=
[
Ã(λ)

0 , L̃(λ)
1

]
, ∂1L̃0

(λ)
=

[
Ã(λ)

1 , L̃(λ)
0

]
.

We define the theory on the spatial interval [−a, a], and
the superfields Ã(λ)

0 and Ã(λ)
1 are subject to boundary

conditions: Ã(λ)
0 (a) = Ã(λ)

0 (−a), Ã(λ)
1 (a) = Ã(λ)

1 (−a). The
equation satisfied by the superspace monodromy operator
Tλ(x, θ) is

∂

∂x
Tλ(x, θ) = Ã(λ)

1 Tλ(x, θ) , (3.11)

withboundary conditionTλ(−a) = 1.The solution of (3.11)
is

Tλ(x, θ) = P exp
(

−
∫ x

−a

dy Ã(λ)
1 (y, θ;λ)

)
, (3.12)

whereP is the path-ordered operator.The operatorTλ(x, θ)
obeys

∂0Tλ(x, θ) =
[
Ã(λ)

0 (a), Tλ(a)
]
,

which is the Lax form of the monodromy operator in super-
space. This can be used to generate an infinite sequence of
local and non-local conservation laws as detailed in Sect. 4.

4 Superfield conserved quantities

4.1 Local conserved quantities

From the superspace equations of motion (2.3) of SPCM,
it is straightforward to derive the following set of local
conservation laws [26]:

D± Tr(J2n+1
∓ ) = 0 , D± Tr(J2n−1

∓ J∓∓) = 0 ,

with J∓∓ = D∓J∓ + iJ2
∓ , (4.1)

where the values of n are precisely the exponents of the
Lie algebra of G.

The local conserved quantities of SPCM also arise from
the linear system (3.3) via a super Bäcklund transformation
(SBT) or equivalently super Riccati equations. The linear
system (3.3) reduces to the following set of super Bäcklund
transformations (SBT) [21,22]:

±D±
(
G−1Ḡ

)
= iJ± − iJ̄± , (4.2)

with the constraintG−1Ḡ+Ḡ−1G = 2λ−1I,whereG and Ḡ
are the solutions of the superfield equations. The SBT (4.2)
can be recast into the following set of compatible Riccati
equations in superspace:

D±N (λ) =
iλ

2(1 ∓ λ)
(4.3)
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× (
J± + N (λ)J±N (λ) − 2λ−1J±N ∓ [N (λ), J±]

)
,

where N = G−1Ḡ is an even matrix superfield. We can
linearize (4.3) by taking N = V1V−1

2 , as follows:

D±V =
iJ±

2(1 ∓ λ)

(±λ− 2 λ

−λ ± λ

)
V ,

where V =
(V1

V2

)
. (4.4)

Thediagonalization of (4.4) gives (3.3).Byusing (2.1), (2.2)
and (4.3), we can derive a series of conservation laws:

(1 + λ)D− Tr (N (λ)J+) + (1 − λ)D+ Tr (N (λ)J−) = 0 .
(4.5)

Expanding N (λ) as a power series in λ: N (λ) =∑∞
k=0 λ

kNk, one can generate λ-independent conservation
laws. The explicit determination of Nk requires the solu-
tion of a system of algebraic matrix equations obtained
recursively. This system is not easier to solve so that one
could get an explicit form of local conservation laws.

4.2 Non-local conserved quantities

The non-local conserved quantities of SPCM can be ex-
tracted directly from the superfield V(γ). We assume spatial
boundary conditions such that the superfield J± vanishes
as x → ±∞. Then (3.9) implies that V(t,±∞, θ;λ) are
independent of time. The residual freedom in the solution
for V(γ) allows us to fix V(t,−∞, θ;λ) equal to the unit
matrix. We are then left with a time independent function:
Q(λ) = V(t,∞;λ). Expanding Q(λ) as a power series in λ
gives infinitely many conserved quantities

Q(λ) =
∞∑

k=0

λkQ(k) ,
dQ(k)

dt
= 0 .

In order to derive explicit expressions for these con-
served quantities in terms of superfields, we write (3.9)
as

V(t, x, θ;λ) = 1 (4.6)

+
1
2

∫ x

−∞
dy

{( −λ
1 − λ

)
D+J+ −

(
λ

1 + λ

)
D−J−

+i
(

λ

1 − λ

)2

J2
+ − i

(
λ

1 + λ

)2

J2
−

}
V(t, y, θ;λ) .

When we expand the superfield V(t, x, θ;λ) as a power
series in λ,

V(t, x, θ;λ) =
∞∑

k=0

λkXk(t, x, θ) , (4.7)

and compare the coefficients of powers of λ, we get a se-
ries of conserved non-local superfield currents, which upon

integration give non-local conserved quantities. The ex-
pressions for the first few cases are

Q(1)a = − 1
2

∫ ∞

−∞
dy(D+J

a
+ +D−Ja

−)(t, y, θ) ,

Q(2)a =
∫ ∞

−∞
dy

(
− 1

2
(D+J

a
+ −D−Ja

−)(t, y, θ)

+
i
4
fabc(Jb

+J
c
+ − Jb

−J
c
−)(t, y, θ)

+
1
8
fabc(D+J

b
+ +D−Jb

−)(t, y, θ)

×
∫ y

−∞
dz(D+J

c
+ +D−Jc

−)(t, z, θ)
)
. (4.8)

These conserved quantities are exactly the same as ob-
tained in [26] using an iterative method. By substituting
the expansion (4.7) in (3.3) we have

D±
∞∑

k=0

λkX (k) = ±D±
∞∑

k=0

λkX (k) .

The covariant derivatives D± are defined as

D±X (k)

= D±X (k) + i
[
J±,X (k)

]
⇒ {D+,D−} = 0 .

We define superfield currents J (k)
± for k = 0, 1, . . . which

are conserved in superspace such that

D−J
(k)
+ −D+J

(k)
− = 0 , ⇔ J

(k)
± = ±iD±X (k) .

An infinite sequence of conserved non-local superfield
currents can be obtained by iteration [26]:

J
(k+1)
± = D±X (k) ⇒ D−J

(k+1)
+ −D+J

(k+1)
− = 0 .

This establishes the equivalence of the superfield Lax
formalism and the iterative construction of conserved non-
local superfield currents.

5 Lax formalism on component fields of SPCM
and conserved quantities

The transformation (3.1) is equivalent to the following set
of transformations on component fields of SPCM:

g → g(γ) = U (γ)gV (γ)−1 ,

ψR
± → ψ

R(γ)
± = V (γ)ψR

±V
(γ)−1,

ψL
± → ψ

L(γ)
± = U (γ)ψL

±U
(γ)−1.

The conserved currents j± transform as j± → j
(γ)
± =

γ∓1V (γ)−1j±V (γ), where V (γ) and U (γ) are the leading
bosonic components of the matrix superfields V(γ) and



U. Saleem, M. Hassan: Zero-curvature formalism of supersymmetric principal chiral model 525

U (γ). The associated bosonic linear system in component
fields is written as

∂±V (t, x;λ) = A
(λ)
± V (t, x;λ) ,

where A(λ)
± is defined as

A(λ)
± =

{
∓

(
λ

1 ∓ λ

)
j± + i

(
λ

1 ∓ λ

)2

h±

}
.

The compatibility condition of the linear system is the
zero-curvature condition,[

∂+ −A
(λ)
+ , ∂− −A

(λ)
−

]
≡ ∂−A

(λ)
+ − ∂+A

(λ)
− +

[
A

(λ)
+ , A

(λ)
−

]
= 0 .

The operators L(λ)
± = ∂± − A

(λ)
± obey the Lax equa-

tions: ∂∓L±(λ) =
[
A

(λ)
∓ , L

(λ)
±

]
. In terms of space-time co-

ordinates, the associated linear system can be expressed as

∂0V (t, x;λ) = A(λ)
0
V (t, x;λ) ,

∂1V (t, x;λ) = A(λ)
1
V (t, x;λ) , (5.1)

with

A(λ)
0

= − λ

1 − λ2

×
{
j1 + λj0 − i

2
λ

(
1 + λ

1 − λ

)
h+ − i

2
λ

(
1 − λ

1 + λ

)
h−

}
,

A(λ)
1

= − λ

1 − λ2

×
{
j0 + λj1 − i

2
λ

(
1 + λ

1 − λ

)
h+ +

i
2
λ

(
1 − λ

1 + λ

)
h−

}
.

The operators L(λ)
1 = ∂1 − A

(λ)
1 ; L(λ)

0 = ∂0 − A
(λ)
0 , obey

the following equations:

∂0L1
(λ) =

[
A

(λ)
0 , L

(λ)
1

]
, ∂1L0

(λ) =
[
A

(λ)
1 , L

(λ)
0

]
.

To find the component content of the Bäcklund transfor-
mation, we expand each superfield as in (2.4). The set of
Bäcklund transformations on the component field is

±∂±
(
g−1ḡ

)
= ̄± − j± , (5.2)

with the constraint g−1ḡ+ ḡ−1g = 2λ−1I. The matrix su-
perfield N (λ) can also be expanded in term of components
as: N = N + iθ+N+ + iθ−N− + iθ+θ−H.

Substituting the expansion of N and V in (4.3), we get

∂±N(λ) =
λ

2(1 ∓ λ)

× [(−j± −N(λ)j±N(λ)

+2λ−1j±N(λ) ± [N(λ), j±]
)

(5.3)

+ (iN(λ)ψ±N±(λ) − iN±(λ)ψ±N(λ)

− 2iλ−1ψ±N±(λ) ± i {N±(λ), ψ±})]
,

with

N±(λ) =
λ

2(1 ∓ λ)

× (ψ± +N(λ)ψ±N(λ)

− 2λ−1ψ±N(λ) ∓ [N(λ), ψ±]
)
.

The Riccati equation (5.3) can be linearized by taking
N = V1V

−1
2 :

∂±

(
V1

V2

)
=

1
2(1 ∓ λ)

(5.4)

×
{
j±

(
2 ∓ λ −λ
λ ∓λ

)
+ ih±

(∓2 −λ
λ 0

)} (
V1

V2

)
.

The diagonalization of the matrices is equivalent to the
well-known linear system of SPCM. From the Riccati equa-
tions (5.3) the following conservation equation directly fol-
lows:

(1 + λ)∂− Tr (N(λ)j+ + iN+(λ)ψ+) (5.5)

−(1 − λ)∂+ Tr (N(λ)j− + iN−(λ)ψ−) = 0 .

The expansion ofN in λ would yield the local conservation
laws of themodel.Once the explicit formof the conservation
laws (5.5) is obtained, one should be able to relate them
to the local conservation laws of (4.1).

From the linear system (5.1), one can easily find con-
served quantities

Q(1)a = −
∫ ∞

−∞
dyja

0 (t, y) ,

Q(2)a =
∫ ∞

−∞
dy

(
−ja

1 (t, y) +
i
2

(ha
+ − ha

−)(t, y)

+
1
2
fabcjb

0(t, y)
∫ y

−∞
dzjc

0(t, z)
)
,

which are the non-local conserved quantities obtained
in [18–20,26]2.

In summary: we have investigated the one-parameter
family of transformations on superfields of SPCM leading
to a superfield Lax formalism. The linear system asso-
ciated to non-linear superfield equations is obtained and
as a result bosonic and fermionic zero-curvature condi-
tions appear. The superfield Lax formalism is then used
to generate superfield local conserved quantities of SPCM.
The superfield Lax formalism is shown to be equivalent
to the iteration construction of super non-local conserved
quantities. The linear system is then related to the super

2 These conserved quantities generate a non-local symme-
try (Yangian) as in the bosonic case. There are two copies of
Yangians corresponding to the L and R currents [25–28].
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Bäcklund transformation (SBT) and super Riccati equa-
tions. The linear system in superspace is further analyzed to
obtain expressions of the non-local superfield currents. At
the end, we applied these considerations to the component
content of SPCM. There are many interesting directions
in which this work can be extended. One way is to obtain
the Poisson bracket algebra of the monodromy operator
of SPCM and then to investigate the algebra of local con-
served quantities of SPCM. It would be interesting to relate
the superfield local conserved quantities (4.1) with (4.5).
The Lax representation of SPCM can further be investi-
gated to incorporate the inverse scattering method. The
zero-curvature structure and Lax formalism of SPCM can
also be investigated on non-commutative spaces.
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